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LIQUID CRYSTALS, 1989, VOL. 5, No. 4,  1083-1097 

Order electricity reconsidered 

by W. J. A. GOOSSENS 
Philips Research Laboratories, P.O. Box 80.000, 5600 JA Eindhoven, 

The Netherlands 

We have considered the Landau-de Gennes expansion of the distortion free 
energy to examine a possible connection between the electric polarization in terms 
of a gradient of the order parameter and the electric polarization resulting from 
splay and bend distortions of the director. In addition we have considered the 
electric polarization connected with the electric quadrupole density, which is not 
contained in the Landau-de Gennes expansion. 

1. Introduction 
Long ago Meyer [l] argued that distortions of the director field n(r) may 

induce a macroscopic polarization. Considering n,, = an,/ar, and the electric field 
E l ,  i, j = x, y ,  z ,  as the independent variables in the differential of the thermodynamic 
potential he expanded the conjugate variable D, as 

= E l ] E ]  + 4'el~knJ,k* (1) 

Employing the local symmetry with respect to n = (0, 0, n,) he showed that the 
flexoelectric polarization (P')l = el,kn,,k is determined by the independent tensor 
elements e,,, = eryy = e l ,  and exxr = evvl = e, leading to 

Pr = e,n(V - n) + e3(n - V)n. ( 2 )  

Recently Barber0 et al. [2] have extended equation (1) by considering the gradient 
of the order parameter S as an additional independent variable, that is D, is expanded 
as 

Dl = E,,E, + 4~e,kn,~k + 471R,,S,, . (3) 

Po = r,n(n - V)S + r,VS. (4 )  

The order electric polarization (Po), = R,S,,  was written as 

In order to relate the unknown coefficients r1  and r2 to the well-known coefficients 
el and e3 they then considered the free energy as a function of the independent 
variables El and Q l l k ,  where Q,, = S(nlnl - dlJ/3), leading to 

they produced some relations up to second order in S between the coefficients r ,  and 
r, in equation (4)  and the coefficients el and e3 in equation (2). As the derivation of 
these relations cannot be found and the problem itself is intriguing we recalculate in 
$2 (&) i  from equation (6).  Moreover we introduce in the expansion of Di in terms of 
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1084 W. J. A. Goossens 

e l k , / ,  given by equation (5 ) ,  the next higher order term proportional to QI,Qk,,, , giving 
rise to addlitional terms for (Pd), in equation (6), second order in S .  As it turns out that 
the relatians given in [2] between the coefficients r ,  and r2 and the coefficients e ,  and 
e,  cannot be verified, equation (4) is just a formal expression without a physical 
meaning. ‘Therefore we consider in 53 the possible existence of order electric polarization 
in conneci ion with flexo-electric polarization on the basis of the interaction between 
the electric quadrupole density and the gradient of the electric field. The inhomogenity 
of the field is described in terms of the anisotropy of the dielectric tensor, which indeed 
is a different procedure than used in [3 ] .  The discussion of the results is given in section 
4 together with a consideration of the Landau-de Gennes expansion of the distortion 
free energy [4, 51 and its extension to the elastic free energy [6, 71. 

2. The Landau-de Gennes expansion of the distortion polarization 
In the Landau-de Gennes description of liquid crystals the free energy is expanded 

in powers of the tensor elements Qij = S(ninj - 6,/3) and the derivatives Qij,k = 
aQij /dr , .  The distortion free energy in lowest order of the independent variables Q ,  
and Q l l , k ,  originally introduced as [4, 51: 

fd = i L 1 Q i j . k Q i j . k  + i L z Q i j , j Q i k , k >  (7) 
where L, and L2 are temperature independent material parameters, is, in its general 
form, given by 

fd = 1B.. 2 ykimn Qij ,k Q1rn.n * (8) 
The connection between the coefficients L, and Lz and the tensor elements 

In an electric field there is a contribution to the free energy which, with the electric 
is derived in the Appendix and discussed in $4. 

field E as the independent variable, is given by 

f E  = - 
1 
871 
- ~ i j  E i  Ej. (9) 

The elements E,, of the dielectric tensor can be written as 

‘ f J  = ‘L’fj + - E.L)n fn j ,  (10) 
where E, .  and E,, are the dielectric constants perpendicular and parallel to the director, 
respectively. 

In addition to the pure distortion and dielectric free energy, quadratic in the 
independent variables Q,  k and E,, respectively, we may also consider an additional 
contribution A f to f due to a coupling between the distortion Q, and the electric field 
El .  In lowest order of the independent variables A f is written as [2] 

Af = - E ~ G 6 j k / Q ~ k , l .  (1 1) 

f = f d + f E + A f  (12) 

4 = E , , q  + 471(&),, (13) 

Minimizing the free energy 

with respect to El we find for the conjugate variable D, = -4naf/aEI 

where the distortion polarization (Pd), is given by 
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Order electricity reconsidered 1085 

The independent non-zero elements of the fourth-order G tensor can be found in 
the standard way by employing the local symmetry with respect to the director. In a 
local coordinate system x ,  y ,  z where the director at the origin is along the x ,  y or z 
axis, these axes are two-fold rotational symmetry axes. Symmetry then demands that 
Gijk, is pairwise even in the indices i, j ,  k, I = x ,  y ,  z that is 

( P d ) j  = GjjjjQjjj + (Gjjjj + Gj,jj)Qjj,j. (15) 
Considering an infinitesimal rotation of n in this coordinate system, i.e. n(r) = 
n(0) + 6n(r), and taking into account the constraint n2(r) = n2(0) = 1, we have in 
equation ( 1  5) 

leading to 

(Pd)i = (3Giiii(n: - f )  + Gijji(nj - f ) )S, ,  + (G, + Gijij)S(ninj),j, (18) 
where i, j = x,  y ,  z with the proviso that in equation (18) i # j .  In view of the 
equivalence of the x, y and z coordinates, we may introduce the independent coefficients 

rfo) = 3G,, - G. 1 1 1  ... 7 e(O) = G.. LIJJ .. + G,, , i # j ,  (19) 

(pd)j = (P,’o))i = r(0)(ninj - S , / ~ ) S , ~  + e(o)S(ninj,j + n j q j ) ,  (20) 

to write equation (1 8) in the form 

valid for any direction of n. These equations show that in first order of S there is no 
relation between the polarization due to a gradient of S and the polarizations due to 
a splay and a bend distortion both proportional to e‘O)S. As the splay and bend 
polarizations described in [l] and considered in [2] are independent modes, second 
order in S,  we therefore introduce in equation (1 1) the next higher order term in the 
expansion of A f linear in Qjj ,k  that is, 

A f  = -EiGijk/Qjk,/ - EiGi jk imnQjkQ1m.n (21) 

(pd)i = (Gijk/ + Gimn,k,Qmn)Qjk,, = (Pdo’)i + (Pdi))i (22) 

leading to 

(cf. equation (14)). Proceeding as before it is easily found that (P,”’),, determined by 

(pd(’))i = Gijkjki Qjk Qjk , i  + Gnkjjk Qik Q j , k  + Gijkijk Qjk Qij,k + Giik,k, Qik Qjk ,  j ,  (23)  

yielding 

(pd(’))i = (Gi/>jiQJ + Giii>iQil>Qjj,i + (GijjijjQj + Giii i j jQii IQ..  1J.J’ . (24) 

can be written as 

(pd”>i = ‘Giiizit Qii Qii.1 + (Gijj,jiQ,j + Giiijji Qii)Qj,i + (Gijjijj Qj + Giiij/jQii)Qij.j, 

(25)  

where i, j = x ,  y ,  z with the proviso that in equation (25) i # j .  In view of the 
equivalence of the x, y and z coordinates we may use the following notation for the 
independent non-zero elements of the sixth order G tensor 

g , = G  ...... g = G  ...... g = G  ..... g , = G  ...... g = G  I I l l J J  ...... > (26) 
111111 > 2 INI’ 3 IlIJJl 9 JJJ1u ’ 5 
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1086 W. J. A. Goossens 

to write equation (25) in a coordinate free form 

(PJ'))~ = (rjl)ninj + r$')S,)SS,j + (e\')ninj,j + e$')njni,j)S', (27) 

where 

(TI1) + 2g3)/3,/ (28) 
(4gl - g2 - g3)/3, 4') = 

(2g5 - g4)/3, 

# I )  = 
I 

(2g4 - g5)/3, = = 
1 

are in general four independent coefficients. Accordingly there is also, in second order 
of S,  no relation between a possible polarization due to a gradient of S and the now 
mutually independent splay and bend polarizations. 

To compare these results with those of [2] it should be noted that the Landau 
expansion of the free energy in powers of Q, and Qij ,k  was introduced by de Gennes 
to describe the nematic-isotropic phase transition [4]. The free energy connected with 
the spatial variation Qij,k of the order parameter Qij was for that purpose written in 
terms of two rotational invariants shown in equation (7); this implies that the tensor 
Bi,kbnn in equation (8) is constrained to the form 

Bijklmn = L l s i I s j m 6 k n  + LZsi ls jkdmn,  

appropriate indeed for the isotropic phase 141. As such an expansion is inadequate to 
describe the distortion free energy of the ordered phase, it was not meant for that, the 
expansion of f d  in equation (7) has been extended with all possible third order 
rotational invariants of the form Q,Q,l,iQhl, j ,  Ql,Qik,lQjk,,,  etc., with arbritrary tem- 
perature independent coefficients [6, 71. This extension of the original Landau-de 
Gennes expansion in equation (7) is equivalent to the statement that the tensor Bl,k,mn 
in equation (8) should be written as 

~ ~ l d i l s j m s k n  -I- L , 6 i / s j k s m n  + 2 I s i l s j m Q k n  + % S , / Q j m s k n  
' ' ' . . 

This indeed is the essence of the procedure in [8], albeit in a slightly different way, to 
account for the possible symmetries of the ordered phase, also discussed in [9]. 
Considering now the expansion of A f in equation (21), linear in Q i j , k ,  as an expansion 
in terms of' rotational invariants with temperature independent coefficients Gi, similar 
to the extended expansion of&, we find 

A f  = - G , Q i j , j E i  - ( G 2 Q j k Q j k . i  + G 3 Q i k Q j . k  + G 4 Q j k Q i j . k  i- G S Q i k Q k j , j ) E i j  

(29) 
valid for any direction of n. This expansion immediately shows that all tensor 
elements Gijki in equation (1 1) are replaced by one coefficient G I ,  making both r(O) and 
do) in equation (20) equal to 2G,.  Further inspection of equation (25) ,  cf. equation 
(24), shows that both tensor elements Gilii1, = g, and Gij,i = g,  in equation (25) are 
represented in equation (29), Af = - (Pd) iE i ,  by one coefficient, i.e. G 2 ,  that is 
g, = g2 = G2. The same applies to the couples Gjiiili and Giiliii = g,, Gililii and 
Giiiij =: g,  and Giiiiii and Gijiijj = g,, that is g, = g, = g ,  = g, = g,, yielding the 
following, special form of equation (28) 

r{ ' )  = 2g,/3,  r f )  = 8g,/9, e!') = es') = g ,  13. (30) 

The only way to retain in the Landau-de Gennes expansion of A f the splay and bend 
polarizatia'ns as independent modes, is to make in the last two terms of equation (24), 
cf. (29), the restriction i # j ;  then indeed G,,,iJJ = G, = g, and Giiiiii = G, = g ,  
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Order electricity reconsidered 1087 

remain independent of Giiiiii = G2 = g, = g2 = g, and of each other, yielding 

(2gi - gi - g1)/3 = 0, = 2g1/3, r ( l )  = 

e'" = 

I 

(2gs - g d 3 ,  el') = (2g4 - d / 3 7  1 

which are discussed in 54. 

3. Distortion polarization in connection with the electric quadrupole density 
Apart from the formally introduced contribution Af, equation (21), to the free 

energy we now consider the additional energy 

A& = - 4 :  VE = - q , k E k , j ,  (32) 

due to the interaction of a given electric quadrupole density with the gradient 
of an applied field [lo]. The electric quadrupole density is defined in terms of a 
second order tensor q j k ,  which for uniaxial orientational order can be written 
as [3, 111: 

Here q:S = qll - 4,. is the anisotropy of the electric quadrupole density with 
respect to the director. For later use we note that equation (32) is based on the 
interaction energy of a molecular quadrupole qm = +Xvemvrmvrmv with the gradient of 
a local electric field, averaged with an appropriate single particle orientational distri- 
bution functionf(cos 9). The local field can be written as E,,,c, = K E where E is the 
Maxwell field and K a molecular tensor which is independent of the dielectric anisotropy 
E,, - el and accordingly independent of the molecular orientation with respect to the 
director [ 12, 131. Hence the orientationally averaged interaction energy density 
(q,,, : V(K * E)) defined by 

(qm : V(K - E)) = e ~ ( C O S  9) . ~ ( C O S  9)qm : V(K * E) (34) 6 
can be written as 

(qm*K):VE = q$Q:VE, q: = eqa, 

where qa = qlKl - qt K, is an effective anisotropy of the molecular quadrupole tensor 
and e is the number density; l(ongitudina1) and t(ransverse) respectively refer to 
parallel and perpendicular to the long molecular axis. 

The condition div D = 0, appropriate to the case of an insulating medium, can 
be written as, cf. equation (13), 

which, in view of the condition rot E = 0, yields 

where ei j ,  defined in equation (lo), can also be written as 
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1088 W. J. A. Goossens 

Substitution of equation (36) in equation (32) yields 

A& = qJJ(EtJ.JEl + 471q,J)/EJJ 
giving rise to an electric polarization (P,), given by 

which in view of equations (33) and (37) can likewise be written as 

(Pq), = - q:&,*QjJQzJ.r/Ejj. 
Writing (&), = (Po),  + (P,), we then have 

= -qfE,*($ - 1 / 3 ) ( n i n J  - s l J / 3 ) s s , J / E J J ,  (41) 

( p f ) i  = -qa*Ea*(n; - 1 / 3 ) ( n , n J ) , J S 2 / E J J ,  (42) 
valid for any direction of n. Equation (42) shows the flexoelectric polarization resulting 
from a distortion of the quadrupole density does not discriminate between splay and 
bend distortions; it is only when the director is along the x, y or z axis that these can 
be separated, that is with n along the z axis, 

Here we also note that equation (42) for (q)i is quite different from the equation 

(41, = - Liiq:S(ninj), j (44) 
derived in [3] (the quadrupole tensor 0, in this is defined so that 0, = 39, and 
0, = 3y:S) with L, = L + L,/3 and reconsidered in [14] with Lii = L,, for splay 
and L,, = L, for bend polarization respectively; L is a Lorentz local field tensor 
written in lerms of a macroscopic anisotropy La = LI, - L ,  that is  

L, = L6, + L,(ninj - 413) .  (45) 
The basis fior the derivation of equation (44) is the introduction of a polarization P,, 
cf. equations (2.4), (2.5) and (2.8) l.c., given by 

pi = (gij - 6ij)qjk.k = gijqjk.k - qik,k (46) 
in terms of the gradient of the quadrupole density and the unknown tensor g , .  
Compatibility of equation (46) with the free energy of a quadrupole density in a field 
gradient, written as 

apparently requires, I .c . ,  

glJ = ( l  + L f j ) 6 f J ,  (48) 

= + drEfLffqfJ,, = + drEILffq,*S(n,nJ),J' (49) 

which is conceivable only when equation (47) is integrated by parts to yield 

s s 
Here it should be noted that equations (47) and (49) together are only meaningful 
together i.e non-zero, when n,n, - 6,/3 and (n,nJ),J are simultaneously non-zero; this 
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Order electricity reconsidered 1089 

indeed requires that the director is not along the x, y or z axis. In that respect equation 
(49) cannot be interpreted in terms of independent splay and bend polarizations; the 
definition of a Lorentz local field tensor in terms of a macroscopic anistropy, cf. 
equation (49, being at the same time independent of position, cf. equation (47) is also 
noteworthy. 

More relevant however is to examine the origin and meaning of equation (46). 
Consider therefore the microscopic field equation [ 15, 161 

V - e = 471 1 c em,6(R,, - R), 
nt " 

where e is the electric field in vacuum in the presence of point charges em, with radius 
vectors Rm,; the indices v and m refer to the vth charge of the rnth molecule, considered 
as a stable cluster of charges. The radius vector R,, is written as R, + r,, where rmv 
is the radius vector of the charge em, with respect to the nzth centre of mass with the 
radius vector R,. The development of the right hand side of equation (50) in a Taylor 
series up to second order in r,, yields 

V - e = 471(eR - V - pR + VV : q R ) ,  (51) 

where 

q R  = 1 qrn66(Rm - R), q m  = 3 1 emvrmvrrnv, (54) 
m V 

are the densities of the discretely distributed molecular moments en,, p, and qm 
respectively. The corresponding macroscopic densities, considered as continuous, 
slowly variable functions of the space coordinates are defined as the statistical averages 
of the fluctuating densities taken over a volume element A V ,  large on a molecular scale 
and yet small on a macroscopic scale. These averages can be written as 

( m R )  = drm,( r )exp(-  U(T) /kT)  dTexp(-  U ( r ) / k T ) ,  (55) s i's 
where r denotes the set of translational and orientational variables of all molecules 
in the volume A V  around R; U(T) is the total energy as a function of the variables r. 
The Maxwell field E inside the system is the macroscopic field generated by the internal 
and external sources, i.e. E = ( e )  + E,,,. As V - E,,, = 0 inside the system, 
equation (66) may be written after averaging as 

' = 47c((eR) - ' ((PR) - ' < q R ) ) )  (56) 

V - D  = 4x(e,) = 47ce (57) 

D = E + 4719 = E + 4Z((pR> - V . ( q R ) ) .  (58 )  

or 

which defines the displacement vector D, i.e. 

Up to now the origin of the polarization 9' has not been specified, which indeed 
is not necessary to arrive at equation (58). However by extracting that part of P due 
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1090 W. J.  A. Goossens 

to the molecular interaction with E and usually linear in E, i.e. B(E) = x - E, 
equation (58) can be written in the general form 

1) = E 4nx * E + 4n((pR) - V (qR)) = E E + 4719, (59) 

in which a possible non-zero 9 is due to intermolecular interactions. Up to the order 
written equation (59) is complete. The addition of a term g , J q J k , k  to this equation to 
describe the specific polarization in liquid crystals leading to equation (46) is redundant 
and ambiguous, no distinction being made between ( q R )  defined according to equation 
(55)  and the averaged value (4,) = g,*Q in equations (33) and (34). Therefore, it is 
difficult to appreciate the meaning of equations (46) and (48). We end this section by 
considering the case that n = (n,(z), 0, n,(z)) and S = S(z), relevant indeed when a 
voltage V = f:dzE(z) is applied across the sample. From equations (41) and (42) we 
easily find 

whereas equation (32) can be written as 

yielding with 

E,, 

Ell E l  Ell El 

E, = - 5 [D, - 4nPz] - - 4nPx = constant 

The last term gives rise to a surface energy 

(66) 

in the absence of the external field which couples the director at the surface with the 
gradient of the order parameter at the surface. 
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Order electricity reconsidered 1091 

4. Discussion 
The Landau-de Gennes expansion of the distortion free energy in terms of the 

gradients of the tensor order parameter is a simultaneous expansion in terms of the 
gradients of the order parameter S and of the gradients of the director field (ninj) .  In 
such an expansion the coefficients determining the contributions in terms of S,i and 
(ninj),i,  are directly connected; cf. equation (A 2). Therefore a connection could be 
sought between the coefficients r ,  and r, in equation (4)  and the coefficients e, and e3 
in equation (2) by making a similar expansion of the electric distortion free energy. 
Indeed considering the relevant expression of the distortion free energy in equation 
(11) it may be noted that equation (18) yields two contributions to the distortion 
polarization which on account of symmetry are unrelated; the tensor elements G,,, GMi 
and GiM = G,, are independent. Considering however equation (1 1) as a Landau-de 
Gennes expansion, i.e. writing A f = GI EiQiij, the various tensor elements G,,, are 
replaced by the coefficient G, connected with the one invariant EiQ,,j. Then the 
coefficients do) and e(O) in equation (20) are equal, i.e. r(O) = e(O) = 2G,. Equations (27) 
and (28) show that in second order of S also there is, on account of symmetry, no 
relation between order electricity and the now mutually independent splay and bend 
polarizations. When however equation (21) is considered as a Landau-de Gennes 
expansion, then all contributions to (P,")), in equation (27) are determined by one 
common coefficient. Indeed the four coefficients connected with the four invariants 

second term in the right hand side of equation (21) are all equal, due to the presence 
of the common tensor element Giiiiii in equation (24), cf. equation (25) leading to 
equation (30). 

At this stage we note that the coefficients el and e3 in equation (2) describing splay 
and bend polarization as independent modes are in lowest order quadratic in S and 
in principle different coefficients. Indeed according to the physical model [I, 171 the 
splay and bend polarizations are due to a coupling between the geometrical asymmetry 
of conical and bow like molecules respectively, and the macroscopic splay and bend 
distortions respectively. In the simple model of [I71 el = K, ,S ,p , /kT  and e3 = 
K3, b,p,/kT, where K , ,  and K,, are the elastic constants for splay and bend respectively, 
in lowest order proportional to S2; p ,  and pt  are the longitudinal and transverse 
components of the permanent molecular dipole and S, and b, are a characteristic splay 
and bend, respectively in terms of the geometrical asymmetry of the molecular 
anisotropy. The essence of this description of the splay and bend polarizations comes 
also to the fore in the refined and elaborate theories in [18, 191. Then indeed it may 
be concluded that the polarization linear in S given by equation (20) has no relation 
with the splay and bend polarization in equation (2), where el and e3 are proportional 
to S 2 .  Without a physical model equation (20) is just a formal expression. In order 
that the second part of equation (27) can be identified with equation (2), in which 
e, # e3 ,  it is necessary to retain the independence of the tensor elements g4 and g, that 
is g,, g,  # g , .  Then the splay and bend polarizations in equation (27) are also in a 
Landau-de Gennes expansion independent of each other and of the order polarization, 
the latter being undetermined and independent of n; r!') = 0, cf. equation (31). In this 
respect it is difficult to appreciate the meaning of the relations between the coefficients 
r ,  , r 2 ,  el and e3 ,  given in [2], which relate the order electric polarization with the 
mutually independent splay and bend polarizations in second order of S. Indeed as 
shown in equation (30) the order, splay and bend polarizations in equation (27) are 
all determined by one unspecified coefficient g, = g, = g ,  or they are, according 

Q,k Qjk,iE, ' QjkQ, ,kE i ,  QjkQ,],,,kEi and QikQjk,,Ei in equation (29) which replace the 
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I092 W. J. A. Goossens 

equation (31), mutually independent, i.e. g, # g4 # g,, where (2g, - g4)S2/3 = el 
and (2g, - g , ) S 2 / 3  = e3.  The same result for the coefficients e,  and e3 in terms of the 
expansion coefficients in a Landau-de Gennes expansion has been obtained in [20], 
where A13) 3 G, = g, and Ai3) = G, = g,. 

In view of the consequences of the Landau-de Gennes expansion of the distortion 
free energy in terms of scalar invariant combinations of Q, and Qij,k for the description 
of the distortion polarization linear in Qij,k,  we have considered in the Appendix the 
usual Landau-de Gennes expansion of the distortion free energy quadratic in Qil,k 

[4, 51 and the extension of it in terms of scalar invariant combinations quadratic in 
Q,,k and linear in Q, [6, 7, 91. There it is shown that the expansion in equation (A 2), 
cf. equation (7), in terms of two invariants with arbitrary coefficients L,  and L, give 
rise to four relations between the six coefficients, introduced as independent tensor 
elements, which occur in the expansion of equation (A4); cf. equation (A 16). The 
addition ofa  third invariant to equation (A 2) give rise to additional relations between 
the tensor elements in equation (A 18); cf. equation (A 20). The relations in equations 
(A 16) and (A20j are compatible only if all of the coefficients bi are equal, that is 
L, = L? =: L, = bi. 

This restriction is the consequence of the fact that the invariants are introduced 
as scalar contractions of the tensor elements Q, and their derivatives, independent of 
the choice the coordinate system. This is also the case in equation (A 21) where as a 
consequence of equation (A28) all coefficients C!3’ are equal, leading to equation 
(A 33). These equalities resolve the arbitrariness of the relations between the various 
tensor elements in equations (A 16), (A 20) and (A 31), which indeed have no con- 
ceivable relations to the symmetry of the director field (ninj)  and its derivatives; they 
do not interfere, however, with the independence of the four elastic modes I.: defined 
in equation (A 24). 

The existence of an electric polarization due to a gradient of a quadrupole tensor 
is not surprising; the equivalence of both, explicitly shown in equations (58) and (59) 
is well known and needs no elucidation [15, 161. The proper relation between the 
macroscopic polarization and the orientational averaged quadrupole density, shown 
in equation (40), is on the contrary not trivial; the statistical averaged value of the 
molecular quadrupole density defined in equation (55) is not the same as the orien- 
tational averaged value of the molecular quadrupole density in equation (34) cf. 
equation (33). It is satisfactory in that the required anisotropy of the quadrupole 
density is consistent with that of the molecular shape and polarizability, which indeed 
determine the orientational order [l I]. Equation (42) shows that the polarization due 
to the quatlrupole density in terms of (ninj) , ,  , does not discriminate between splay 
polarization and bend polarization introduced in [ 11 as independent modes; cf. 
equation ( 2 ) .  Indeed the quadrupole polarization has no relation with the flexoelectric 
po1arizatio:n in terms of the geometrical asymmetry of the molecular anisotropy. We 
may also note that the free energy A& = - (P,),E, due to the quadrupole polarization 
(P,), defined in equation (40) is not contained in the Landau-de Gennes expansion of 
the free energy A f = - (Pd)*E,  in equation (29). Comparison of equation (40) with 
equation (29) shows that only the invariant EiQikQ,,k = EiQjjQij,i + Ei(QjkQii,k)izj 
in equation (29) contains a term which resembles the energy (PqjiEi; in view of the 
denominator = E + E:Q, in equation (40) they are however not identical. So we 
may conclude that a Landau-de Gennes expansion of the distortion free-energy is not 
very useful for the discussion of order, splay, bend and quadrupole polarization. 
Finally the consequence of the coupling between the director and the gradient of the 
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Order electricity reconsidered 1093 

order parameter a t  the surface, described by equation (66), for the director orientation 
at the surface will be discussed in the near future. 

Appendix 
The Landau-de Gennes expansion of the distortion free energy is given by [4] 

fdist .  = $LI Qij,kQij ,k + * L 2 Q i j , j Q ; k , k ,  (A 1) 

yielding [5] 

fdist. = L,(f(VS)’ + (Vn)’S2 + (n * rot n)’S2 + ((n V)n)’S’) 

+ L l ( n i , j n j , i  - ni,inj,,)S2 

) 
2s + t L ,  $(VS)’ + f ( (nv)S)’  + - (2(V * n)(n - V) - ((n * v)n) - V))S 

+ +L2((Vn)*S2 + ((nV>n)’S2) 

( 3 

= $(L, + ;L~)(VS)’ + &L’((II - v>S)’ 

+ 3L2S(2(V n)(n - V) - ((nV)n) - V ) S  

+ 3(2L, + L2)((V - n)z + ((n - V)n)’)s’ + L,(n * rotn)’S’ 

+ L I ( n i , j n j , i  - n i , i n j , j ) ,  (A 2) 

ni,jnj,i - ni,inj, j  = V - ((n * V)n - n(V - n)). (A 3 )  

fdist .  = $Bi jk /mnQij ,k  Q/m.n 9 (A 4) 

where the last term can be written as 

The distortion free energy can also be written in the general form 

where the B,,, are the elements of a sixth order tensor. In order to employ the 
symmetry with respect to the local director, we consider a local coordinate system x, 
y ,  z in which the director at the origin is along the x ,  y or z axis. Symmetry then 
demands that the indices i, j ,  k,  I ,  m, n are pairwise equal, yielding 

fdist .  = t Bqkijk Qij ,k Qij .k 3 Bijikk Q ~ J , J  Qik,k * (A 5 )  

Considering an infinitesimal rotation of the director, i.e. 

n(r) = n(0) + 6n(r) 

where n(0) = n(r) = 1, we have 

Q.. 1 l . J  . = (nf - 1/3)S,j;  i, j = x, y ,  z ,  (A 6 )  

( Q i j , k ) i + j  = S ( n i n i ) , k ;  i, j ,  k = x ,  y ,  z. (A 7) 
The expression BijkijkQij,kQij,k in the right hand side of equation (A 5) can consequently 
be written as the sum of four separate terms i.e. 

(1) Biiiiii Q:,i = Biiiiii (nf - 1 /3)’ S,: 
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1094 W. J. A. Goossens 

where, in  view of the equivalence of the x,  y and z coordinates, the four distinct 
elements of the sixth order B tensor can be written as 

b , = B  111111 ...... Y b 2 = B  IlJIlJ ...... > b 3 = B  I l l W  ...... 7 b 4 = B  fjkrjk . . . .  5 . (A 9) 
here i # j # k # i, i, j k  = x ,  y ,  z .  

With the director along the z axis we find 

(A 10) 1 (1) b,(nf - 1/3)2S,$ = $bl(S,: + S,: + 4S,i) 

( 2 )  b2(n? - 1/3)2S,: = 6b2(5(S,: f S,:) + 2s.;) 

( 3 )  263(ninj):jS2 = 2b3(nf(n?,, + n:,,) + nl(n:,, + ni,,))S2 

(4) 2b,(ninj)~kS2 = 2b4(nt(nf,, + ni,,)S’ 

which can be written in the general form 

BijkijkQij.kQij,k = &(bi 5b2)(VS)’ i- i(b1 - bz)((n v ) S ) 2  
+ 2b3((V * n)2 + ((n - V)n)2)S2 + 2b4(n * rot n)2S2 

- 2b3ni,inj,jS2 + 2b4ni,jnj,iS2; i # j .  (A 1 1 )  
The expression BljikkQv,jQik,k on the right hand side of equation (A 5) can equally be 
given an exlplicit form, that is with the director along the z axis, the four separate terms 
are 

(A 12) 

( 1 )  b,(n: - 1/3)2S.: = $b,(S,: + S,; + 4S,:) 

(2) 2bs(n? - 1/3)S,i(ninj),jS = +b5S(nz(nx,x + ny%y>>S,z 

- abSS(n,n,,S, + nzny,rS,y) 

( 3 )  b3(ninj)fjS2 = b3(n,2(n?., + n:,,Y> + n M , ,  + ni,,)>S2 

(4) b6(ninj), j (nink) .k  s2 = 2b6nanx,xny,y S 2  5 

where b, arid b6 denote the tensor elements 

bs = BllllJ; b, = BIUlkk; i # j # k # i. (A 13) 
Rewritten in a coordinate free form we find 

BIJlkk Qij J Qik k = $61 ((VS)’ + 3((n * V)SI2 )  
-t $b5S(2(V - n>(n - V) - ((n - V)n) - V)S + b,((V n)z + ((n * V)n)‘)S* 

+ (b6 - b3)nI,,nJ,,SZ; i z j (A 14) 
Substitution of equations (A 14) and (A 1 1 )  in equation ( A  5 )  yields 

2fd = &(2b, + 5b2)(VS)’ + +(2b1 - ~ , ) ( ( I I - V ) S ) ~  

+ 3b5S(2(V - n)(n * V )  - ((n 6 V)n)  - V)S + 3b3((Vn)2 + ((nV)n)’)S2 

+ 2b,(n - rotn)’S2 + 2b,nl,,n,,,S2 - (3b3 - b6)nI,,nJ3,S2; i # j 

(A 15) 
Compatibility with equation (A 2) requires 

26, = Ll + L2, b2 = b, = L,,  36, = 2Ll + 152, b, = b, = L 2 .  

(A 16) 
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Order electricity reconsidered 1095 

According to [6 and 71, the expansion in equation (A 1)  should be completed with the 
term +L3 Qij,kQjk,, , where the invariant Qij,k Qjk,i can be evaluated as 

Q.. 1j.k Q .  Jk,i . = ‘ (VS)2 9 + +((n V)S )2  + 5S(2((n V)n)  - V - (V - n)(n - V))S  

(A 17) 2 + ((V * n)2 + ((n * V)n)2)S2 + (ni,jnj,i - n i , , n j , j ) ~  

yielding 

2fd = i(6LI + L2 + L,)(VS)’ + +(L2 + L,)((n-V)S)’ 

+ f ( L 2  + L3)S((V * n>(n * V )  + ((n - V)n)  - V)S  

+ (L ,  - L,)S((Vn)(nV) - ((nV)n) - V ) S  

+ (2L1 + L2 + L3)((V * n)’ + ((n - V)n)2)S2 + 2 ~ , ( n  - rotnl2S2 

+ (2Ll + L3)(n;,jnj,i - n;,inj,j)S2 = + .%,)(VS)’ 

+ f(3b1 - b2)((n - V)S)’ + +(b5 + b7)S((V - n)(n - V )  + ((nV)n) - V ) S  

+ (b, - b7)S((V - n)(n - V )  - ((n * V)n)  * V ) S  + 4b3((V - n)’ + ((n - V)n)’)S2 

+ (2b4 + b8)(ni,jnj,j)S2 - (4b, - b , ) r ~ , , ~ n ~ . ~ S ~  + 2b,(n * rotn)’SZ, (A 18) 

where 

b = B  ...... b = B . .  7 1lJlJi > 8 ijkkji . 
Compatibility requires 

3b1 = LI + L,  + L3, b2 = b, = Ll ,  b, = b6 = L,, 

4b3 = 2LI + L2 + L,, b7 = b, = L,. } 
In order to lift the degeneracy of the elastic constants K, ,  and K33, cf. equation (A 15), 
we may introduce an additional distortion free-energy of third order in S which, in 
[6 and 71 is written as 

6 

Afd = 1 C~3’G,’s. (A 21) 
i =  I 

Here the C;’,’ are phenomenological coefficients and the G:,) the six invariants 

(A 22) 1 Gi3’ = QijQik, jQki , / ,  Gf’ = QijQik.kQj/,i,  

G P  = QijQik,rQjk,,, Gf’ = Qij Qik, I Qj1.k 5 

Gi3) = QijQik,,Qkr,j,  GS’ = QijQk/ , iQk/ . j .  

In a local coordinate system in which the director at the origin is along the z axis, these 
invariants are easily evaluated, that is with S constant and Q, K a,, Qij,k of ( 1  - do), 
we find 

QiiQik,iQk/,,  = -!&?xz.x<Qzx,x + Qzy,y)S 
($3) = 

- 3Qvz.y(Qzx,x + Qzy.,)S + +(Qzx,xQxz,z + Q z y , , Q , z , z ) ~  

- - f ( ( n x n z ) , x  + (nynz),z)2S3 + H(n,n,):, + (n,nz>tz>S3 

= -+(V * n)2S2 + *((n * V ) I I ) ~ S ~ .  (A 23) 

- 
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1096 W. J. A. Goossens 

Proceeding in the same way and using the notation 

we obtain for the six contributions to equation (A 21) 

i C(3)G(3) I I  = Cj3)(- V, + 2V3), c 4 3 ) ~ 4 3 )  = ~ 4 3 y 2 5  - v,), 

C$’)C(’) ’3 = C$’)(V, + + V, + K), C13)Gi3) = Cl3)(2V, - V, + 2 6 ) ,  

cj3)ck3) = 2ci3)(- - v, + 2v3 - K). 
Cl”G4’) = Cl”(-V, + 2 5  - K), 

(A 25) 
Equation (A 21) however, can by analogy with equations (A 4) and (A 5) be written 
in a more general form, that is with the director along the x, y or z axis, the coefficients 
C::L, b ,  in equation (A 21) being replaced by a set of elements of an eighth order 
tensor, that is, cf. equation (A 22), 

The invariants in equation (A21) and defined in equation (A22) have now to be 
evaluated in combination with the tensor elements given in equation (A 26). Considering 
the first term with S constant and Q ,  a 6,,, Q,,,k a (I - a,,) and n along the z axis 
we obtain 
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where 

(A 30) 

(A 31) 

cl  = Biiikikii, c2 = Birikrkll. 

c3 = Biirkkikk7 c4 = BiiikkiN? 

c5 = Btiikliki, c6 = B~iiklilk 7 

c7 = Biiiklkhr c7 = Biiklikli 

leading to 

2Af = ( 6 ~ 3  - 5 C 1 ) K  - ( 2 ~ 8  - c S ) ~  + (12~1  - 3 ~ 3 ) V ,  

+ ((2% - c3) - (2c* - C s ) > v , .  

5 ~ 1  - ~2 - 6 ~ 3  + 2 ~ 4  + ( 2 ~ 6  - ~ 7 )  + ( 2 ~ 8  - cS)  

on the condition that 

= 0. 

As in [6 and 71 only one of the four terms of equation (A25) is considered to 
contribute to Afd we may require that all of the separate terms in equation (A 28) are 
compatible with those of equation (A 25), that is instead of equation (A 31) we have 

’ }  (A32) 
CI = c2 = c5 = c, = c* = c(3) = c(3) = c(3) = C(3) I 3 5 

c3 = c, = c5 = c“’ = c(3) 3 = Cl3) = c l ,  etc., 

yielding 

cs3  
3 

2Afd = c(V, - + c 4 )  = -((Van)’- (rotn)’ + c(n.v)n)2), (A33) 

where 
c = Ci = Cj3’. 
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